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An Estimation Problem with Poisson Processes

By

Alan E. Gelfand

1. Introduction

Ihis paper considers the following problem. Suppose we

observe a collection of independent Poisson processes, X (t),

I - 1,2,...,n such that

XI(t) . 0(t)

with

)i(t) P(t)

Let
t

p(t) f p(u)du
0

If all the processes are observed up to a fixed time point T ,

bow may we estimate p(t)? If we assume p integrable on [0,.)

and without loss of generality set p(o) - 1 then each X (t)

converges in distribution to Xi(o) where

X,(-) - P0 () •

In section 2 we formalize the mathematical setting for this

problem. In section 3 we describe two estimation approaches and

illustrate these approaches with two choices of p • Application of this

sort of estimation problem arises when there is interest in the conditional

distribution of X(t) given X(C) that is, in the proportion of
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occrrecesof a process which may be expected by time t * In section 4

a successful application of the methodology to the active life of a *

judicial opinion Is described.

2. The Set Up

Suppose

X(t) P MOd)

with

X(t) 6p(t)

Suppose further that

(I) P is integrable with

t
p(t) f p(u) du

0

and that lim p(t) SP(cs) 1
t -) c

(ii) p(t) strictly decreases in t ,p(0) <

Two particular examples of interest ±u the sequel are

P1 t;L)- Ce O , c > 0 with

p1(t;a) - 1 -*

and

PX- - a :P- 0 with

v2(t~a) - tl(M+t)
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In general po and p tend to look as in Figures 1 and 2.

Fig 1: A typical P(t)

Fig 2: A typical p(t)

In view of our assumptions5

X(t) * x~m where X(-) - P0(6

with interpretation
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X(t) - # of occuirences of the process by tim t.

1(!o) - # of occurrences of the process at the end of time.

Why is p(t) of interest? The conditional distribution of 1(t)

given X(ft) is binomial i.e.

X(t)IX(.') -. 1 (X(as). p(t))

and therefore simple computation shows that

F c X(-) > 0J -p(t)

Var[ Xts X() > 0j M C(S) p(t)(1-p(t))

II

where

Henice p(t) measures the expected proportion of occurrences of

the process by time t An Implication of our assumptions on p

Is that for any interval of fixed length, the earlier in 'time it is placed,

the greater the expected mber of occurrences in the Interval.

The significance of p(t) is more strongly mpasized in the

case where we have n Independent processes 11(t) such that

11(t) P0Q(t)) I a - .q

where

(t) I() - ((p(t) )

In this CAse we would like to synthesize Information from the n

PTocesses to estimate the commn p(t). In other words, for any
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Individual process there would be little value in factoring a 8

from the intensity function. However, for some phenomena that we might

sample (see the application in section 4) the behaviour might be such that

from sample to sample

i) the absolute intensity (i.e. expected rate of occurrence) varies
but

11) the relative intensity (i.e. ratio of expected rate of

occurrence at two different time points) does not.

In such a case the form for I(t) in (1) is appropriate. In our

application we envision considerable variation in the 6 . For some

sampled processes, occurrences will be very sparse while for others they

will be quite numerous. But again our interest is not in the 6 but

in p(t) .

Suppose then that we observe the n processes during the interval

[0,T]. How may we estimate p(t) ? (The reader may be curious as to

whether differing lengths of observation time, for differing sampled

processes can be accommodated. We will return to this question shortly.)
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3, Estimation Approaches

In attempting to estimate p(t;OL) using data in [OT]

we consider two approaches.

A. Use the actual arrival times of the occurrences

B. Partition 0,T] into intervals and record numbers of

arrivals in each interval.

Clearly the latter approach results In some loss of information compared

with the former. We shall obtain a measure of this loss and apply it

to our p's of Interest. In applications, it may be the case that

data is gathered categorically for reasons of convenience or reliability so

that only approach B is available. Hence an Indication of the loss

of Information while still of Interest may no longer be relevant.

Consider Approach A. From Cox & Hinkley (p.15-16) if

X(t) - P0(Sp(t)) and in the interval [O,T] (ordered) occurrences

are observed at w., V 2 ,... ,v then the unconditional likelihood

becomes

L(p, ,m,v , qv2,... ,w ) T

-6j P(u)du
(2) o eh i e

The conditional likelihood given X(t) a. thus becomes

6



L(pv 1 ,v 2 ,v3 ,.. .,v x(T)-a)
-6 J p(u)du

! mT 1 p(w.) e 0

T -6f p(u)du/m

6[f p (u)du'] e 0
0

(3) P ! T p(W) (p(T))'

free of 6

.For n samples with occurrences time iji -I... ,n ,

i i  (that is Xi(T) - a,) . -m a , we similarly obtain

L(P,61 , Ui , vij)

(4) IT 6[ 1 n p(w:Lj) e
iJ-1

and L(P,v jtXi(T) - mi , i o 1,...,n)

n U i

(5) -ff m,! JT TT (w v j)(p(T))
i-i i-1

(Note that if sample i is observed over [OTi) the only change to be

made in (5) is that (p(T)) "  is replaced by TT (P(Ti)) i)
i-i

Suppose p is of the form p(t;a) (p of the form p(t;t))

so that with estimation of a, p is specified and thus p is
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estimated. Then, in (2) the unconditional likelihood equations for

a and 6 are

log P(wI;a) aaIN Wo L ad 6 p a -0

a log L m _ p(T;c) - 0

whence

3lgLa log P(v1;ct) 3p(T-ci) -
(6) aCOL - _ (T;a) 0

I /P

In (3) this conditional likelihood equation for a is

log T/m log P(V1 ;C) a log p(T; )(7) S" . -0.

Hence as is well known (e.g. Cox and Levis, Chap 3) the conditional

likelihood equation for a is the same as the unconditional one.

We may rewrite (7) as

3 los(P(w 1.;a)/p(T;n))(8) 1 a -o'I

In (8) the conditional nature of the likelihood equation is most

apparent i.e. P(u;ri)/p(T;r) is the density function for an occurrence

Siren it occurred by time T . Thus if & is a solution (8)

and the usual regularity conditions are satisfied, a will be

asymptotically normal with mean the true n and asymptotic variance

Ma))"  vhere

.... . .. .. driiie / i J/ ,i . ij ii. . . . .. . .. . .....,8



T( log(P(W1;cL)/p(T;c)) 
2

- log p(W;a) 12 -a log p(T;a )12

Computationally a more convenient form may be

(a) E- E[ 2 log(p(W;,z)/p(T;cx))]3a 2

2 2
(10) -E log P(W;a) + a log p(T;2)

For the case of n samples, a is a solution to

n "i a log P(wi L alo(Ta)
(11) I a m

i-l J=1

from which we see that the separation of the occurrence times by samples is

superfluous. The total of m occurrence times may be considered as

a single sample. This may be noted directly by considering the

n
occurrence times of the process Y(t) - El Xi(t) in 0,T].

Returning to (7), consider p (t;) - ae " t We obtain

-o

i a T e cr

C_ - 0

or

u a T e- a'T

and
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1 T2.e- T

(12) I( 1) - - (eT2

a (1-.T)2

(Again see Cox and Lewis, p.4 7).

22For p2 (t;cl) - ct/(ct+t) 2  we obtain

[1 2 )+ m 0

or

~r 1 m(2ci+T)

Ltv twi 2a (c+T)

and

(13) I(a) - T 2 3 2 (a+T)2

We now consider approach B . Suppose we define k intervals by

0 < t1 < t2 < ... tk T . Then for one sample

X(t1), X(t2) - X(t1) ,..., X(tk-l) - X(tk-2 ) IX(T) m

Multinomial (m, ql, q2 ... qk)

where

pt - p(t_ 1)

q - " p(T) , J -

(t 0  0)

For n samples let

n

(x Iz (tj - (tjl))
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Then Z - (Zl,Z2 ,...,Zkl) is complete and sufficient given

X1 (T) - and in fact is multinomially distributed as well i.e.

(Eli M M)

Z - Multinomial (m, ql"".qk

Two natural estimation approaches arise at this point: the method of

minimum chi square and the method of maximum likelihood (method of moments

estimation might be considered as well). The former leads to consideration

of the function

k2
S(Z mq) 2 /mqj

J-I -

while the latter leads to the (conditional) likelihood function

L(p,Z1 ,.. .,z k/m)

k Z
m!T fq J/zj.

jl 1  k-i
(Zk  m- Z j)

Again presuming p is of the form p(t;a), the resulting

likelihood equation for a is

D log ql (a)~log L/m I ! -o
3a a

Or

log (p(t ;a) - p(t_ 1 ;a)) m3 log p(T;t)
z -i 0

Again if 8 (G for- grouped) is a solution to (14), under the

usual regularity conditions iG ll be asymptotically normal with mean

11



the true a and asymptotic variance (IG(a))-  where

)2 log qj (a)

. - q(c) -.
a 2

or in terms of the p (0)

(16) (p (T ; C ) ) - (P (t ; ) - p (t j ; t))- I [ 
B (p (t ; cO)

- p (t ; s))] 2  - a log p (T ;a ) 2

The similarity between expressions (7) and (14) and between (9) and

(16) is not unexpected. In fact, if as k - , sup (tj-t 1 ) - 0
l<j< k

it is straightforward to show that the "categorical" expressions converge

to the corresponding "continuous" ones

In (14), consider Pl(t;a) -te - t . Since

(a) e -atie _-1 e -at iqj (a) =

we obtain

-Cat .-Ol;tj
t.- e J - t e me..aT

(17) 1-at .-a, - e - 0
e - -e -- e

and

12



( 1) c(a) .- (t -tJ- 1 )2 T2e '

S-t.. -t -T 2

Expressions (17) and (18) can be simplified considerably if we use

equally spaced intervals. Let t = T/k vhence tj M Jt Then

(17) becomes

(19) E Zj - a(1-e) -1 k e- CLT (I-e -MT)-1

and (18) becores

(20) t2 e - (-') - 2 - T2e'T (1-e' 2

In (14) consider 2 (t;M) - a/(a+t) Now

a(a+T) (t 1 -t 1 -1 )

ST (c+t) (c+tjl)

and we obtain

2(21 (t~jti~-a2) +
(21) X aa J)(a+ _ ) +J a-

and

(2)(a) - + ..1L ILL-1 L 3
(22) CAT [citj J-1 ( j)2  (ct+t-) 2j ( +T) 2

Again, equally spaced intervals simplify matter Expression (21) becomes

(2(+2j-1)) (2+T)

(23j (0s'J ')(x(J-l)i) " (a+ T)

and (22) becomes

(24) (a 2_j (JI)T2) 2

3 -3 2

13



We now attempt comparison of the estimation approaches. Again

8 is the MLE from (7) while 8G is the MLE from (14).

We employ ideas similar to those of Lindley . Given G how may

we "correct" to & . We obtain an approximation for A = &G - 8 .

Lindley considers the reverse situation; from the functional form

for the ungrouped MLE he obtains a correction to the grouped MLE.

In our applications the grouped MLE is all that is available. LindlPy

also considers an i.i.d. sample while our W are clearly not so.

We also seek to estimate the loss of efficiency due to grouping.

Since 8 is most efficient we calculate the (asymptotic) relative

efficiency of &G to 8 by I(M)/IG(a) . In fact the proportion

of information lost is (1(a) - IG(ct))LM)I)

To approximte A we assume equally spaced intervals. Using

Taylor's theorem

-3
p(Jt;ca)- p((J-l)t;cx) .t P((J-)t;) + -97 P" M(-;

whence

aozDlc)-P((O-1)t;a)) a log(pQj)tci) +__ P,( ai;, f ~~a)

+* 24 Bat p(-)~i

Hence using (14) and suppressing the arguments of p and p we have

a l2og*) -:-21a

G G G

14



In (7), presume that if ( -1 ((J-I)T, jit] then

so that

3log 0 m3log1  o

To a first approximation, then

-i2

(25) A32 2

z 2 lg 2 Plo

G 1G

Iteration can be employed to'better the .pproximation. For

Pl(t;a) = e~ot (25) becomes

-22 [ 
T .-

122

For P2 .(t; .) .. -(r1t) 2 (25) becomes

t2 b U (a4') 2+ 21L I Zt (83+T) 2 d 2 Zjb;fl

where bj - r + (j 5)
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For the relative efficiency of to8 fo89)ad(6

we obtain

r f log~ Dwg) 2 fDlspT2)2
E~~~~o 0( - lo (Tct

( p( ~ a) V ~ t 0) -~ tj I ;C) ) - I r" (p (ti ;cz) p (tj .;cM) 1 - .f a o g1

Let us consider our illustrative PlP 2  using equally spaced

Intervals. For P1 , we have

(26) Eff(&G[&) - (1 e T) .
-i2 e a 7T2e -T

(l-eat ) 2 (,-e )T

For fixed T , the following limits may be easily discerned in (26).

2 2

ii) t i.e. k fixed, a 9w Ef f-

iii) ai f ixed, t4,O i. e. k -o c , Ef f I

iv) a fixed, t -,T i.e. k 1 , E

Letting a - aT , with k T T (26) becomes

(27) k2 S(s/k)_ (S(s)
S 2(g(s) k k2 g(s/k))

where

g(a) -(e-1(-' 2

16



Table 1 evaluates (27) over a range of s and k values. For p2

T2

A 3a2 (C+)2
(28) Ef f (CL Gc) - 2a(~TC 2 7-22

t(ct+t) (s-JU-1)t )1
MT (a+jt)1 (C+(jl)T ) 3  (a+T) 2

Letting a - c/T with k - T (28) becomes

(29) 3skfe+l) 3 E (s k -1(1-1)) - 3sj (sk+j) (sk+(J-l)) 3

Table 2 evaluates (29) over a range of s and k values. The limiting

behavior noted above for (26) also occurs for (28) with "a - 1/a".

Regardless of what parametric form was adopted for P and of what

estimation approach was used the following offers a simple way of assessing

fit. For any two time points t 1 , t 2 , t I < t 2 , X(tl) I X(t 2 ) -

Bi(X(t 2 ), p(tl)/P(t 2 )). Hence (if X(t2) > 0) X(tI)/X(t2) is the

UHVU of p(t1)/p(t 2 ) . For any estimate P(t) p(t,8) we can

compare p(tl;e)/(P(t 2 ;1) with the UMVU ratio.

17



4. An Application

One attractive application of the above methodology fs to the

matter of describing the active lifetime of a court case. More

specifically, associated with court opinions (particularly higher court

opiniomesuch as those of the U.S. appellate or supreme courts) is the

issue of precedential value. How much effect will an opinion have on

later opinions? One way to study this point is to record citations

of this opinion in later cases. It is thus of interest to examine

the pattern of subsequent citation of a case. It seems reasonable

to assume that subsequent citations arrive according to a Poisson

process. Moreover, although the intensity function will vary greatly

from case to case the expected proportion of citations to a given time

need not. (For the data to be presented, some preliminary empirical

work using fixed points tit t 2  and comparing binomials has

supported this premise.) That is, sparsely cited cases will receive

about the same relative proportion of total cites by a fixed time as will

heavily cited cases. Our assumptions regarding p(t) made in section

2 seem appropriate in this context since an opinion is a bit like wine.

At first it improves with age (i.e. is more often cited) but then it

deteriorates (i.e. is less often cited as newer opinion diminish its value).

Estimation approach B was forced in this situation. Data collection

recorded the date an opinion was handed down along with the dates of

subsequent citation. It was decided more convenient and reliable to

categorize subsequent citations into intervals after decision date than

to convert to the exact number of days after the decision date.

18



The court cases studied in this application are all from the U.S.

Court of Appeals. They are drawn from a larger study (see Schuchman

and Gelfand) of the Pederalappellate courts. Two independent samples

were analyzed.- One consists of 100 cases from the Fifth circuit

court of appeals while the other consists of 100 cases from the

remaining ten circuits. In each sampled case the date of decision was

recorded (all dates are betieen 1960 and' 1962).- ly use of Shepard'i

Index we may find all later cases citing any sampled case. By examining

these citing opinions, we may obtain the total muber of citations for

any sampled case an a categorical time from date of decision to each

such citaticn. Subsequent citation of each case in each sample was

considered through December 1976 thus achieving a minima of 13 full

years of obsw,.,v1on with numerous cases reaching to nearly 16 full

years.

A

For convenience we set T 12 and consider T = 2, k - 6.

The resulting Z vectors are given in Table 3. Note that the

fifth circuit opinions are sore frequently cited than their other

circuit counterparts. Furthermore, we find an inexplicable, but

comon, bump in both samples occurring at Z , i.e. for the period

between 6 and 8 years after date of decision. A test of homogeneity

between the samples yields X2 - 1.290 with descriptive level - .93

Table 4 presents the estimation of a using both pl(t;1) and

P2 (t;) . We see that

19



(1) Both functions Pi and P2  fit the data well

(ii) Estimation by HLE and )g2 yield very similar estimates of CL

(iii) The estimates of a for the two samples are fairly close

(as expected from the test of homogeneity)

(iv) For the 5th circuit data using P, and &G - .09,A - 0.0027

while for P2 and 8G = 18, A - 1.038.

(v) From Tables 1 and 2 the relative efficiency for p1 under the given

grouping is 1.03, for P2' 1.04.

In Table 5 we compare the fits of P and p2  with the "best"

(i.e. UMVU) estimate as described at the end of the previous section.

We look at t i  relative to t+ , t i = it- . Again the fits

look quite good i.e. * the maximum relative error for the exponential

model is .03, for the bilinear model .04.

How can it be that two such different functions p, and P2

fit the data almost identically? Table 6 clarifies the matter.

It also provides representative values of the function over time

using Q - .09 in P1  and a - 18 in P2  We see that

during the time interval t - 2 through 12 years p1 (t)/p 2 (t)

is virtually constant. Since the assessment of fit involves p(t)

in a relative way, over the 12 years of observation pl and P2

will be virtually indistinguishable. However in an absolute sense

Pl is preferred to P2 . This follows by asking how many years

we expect to wait for a specified proportion of subsequent citations

e.. what Is t such that pl(t) ..9 , such that P2 (t) - .9 ?

20



For p1  the answer is 25.6 years, for P2. 162 years. Additionally

pt (33.3) .95 and p1 (51.1) - .99 . These proportions are

reasonable both empirically and intuitively. Thus an exponential

intensity function seems an effective descriptor for subsequent citation

of an opinion.

21



2 3 4 6 10. 20 50

i1 1.333 1.125 1.067 1.029 1.010 1.003 1

.5 1.337 1.127 1.068 1.029 1.010 1.003 1

1 1.350 1.131 1.070 1.030 1.011 1.003 1

5 1.893 1.323 1.170 1.072 1.025 1.006 1.001

10 5.9§0 2.361 1.647 1.255 1.087 1.021 1.003

50 > 101 > 104 > 10' 59.879 5.857 1.642 1.086

Table 1: Relative Efficiency for pl(t;t) -

S 2 4 6 10 20 50

.01 34.337 11.896 7.412 4.428 2.480 1.445

.05 7.683 3.034 2.119 1.529 1.178 1.035

.1 4.364 1.951 1.491 1.210 1.061 1.010

.5 1.778 1.170 1.075 1.027 1.007 1.001

1 1.500 1.102 1.044 1.016 1.004 1.001

5 1.344 1.067 1.303 1.010 1.003 1

10 1.336 1.067 1.029 1.010 1.003 1

Table 2: Relative Efficiency for p2 (t;a) -t/(+t)

22



Saimple 6

Fifth Circuit 225 191 145 152 112 85

Other Circuits 182 144 114 123 84 78

Table 3 : The Fifth Circuit and Other Circuit Data

23
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intensity function X (t) = 6i p(t;). It is of interest to

-estimate 2 Q( ). Two estimation procedures are developed, one

using the exact arrival times of observations, the second using

.J categorical arrival times of observations. Two specific instances

of p(t), an exponential and a bilinear form are investigated

further. An example applying the methodology to the active life

of a judicial opinion is described.
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